Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38529522

ABSTRACT

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Male , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Rats, Wistar , Kidney/pathology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Inflammation/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/complications , Fibrosis
2.
JCI Insight ; 9(6)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38516890

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , Humans , Male , Rats , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Glucose , Rats, Wistar , Renal Insufficiency, Chronic/drug therapy , Reperfusion Injury/complications , Reperfusion Injury/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175519

ABSTRACT

We previously showed that SerpinA3K is present in urine from rats and humans with acute kidney injury (AKI) and chronic kidney disease (CKD). However, the specific role of SerpinA3K during renal pathophysiology is unknown. To begin to understand the role of SerpinA3K on AKI, SerpinA3K-deficient (KOSA3) mice were studied 24 h after inducing ischemia/reperfusion (I/R) and compared to wild type (WT) mice. Four groups were studied: WT+S, WT+IR, KOSA3+S, and KOSA3+IR. As expected, I/R increased serum creatinine and BUN, with a GFR reduction in both genotypes; however, renal dysfunction was ameliorated in the KOSA3+IR group. Interestingly, the increase in UH2O2 induced by I/R was not equally seen in the KOSA3+IR group, an effect that was associated with the preservation of antioxidant enzymes' mRNA levels. Additionally, FOXO3 expression was initially greater in the KOSA3 than in the WT group. Moreover, the increase in BAX protein level and the decrease in Hif1a and Vegfa induced by I/R were not observed in the KOSA3+IR group, suggesting that these animals have better cellular responses to hypoxic injury. Our findings suggest that SerpinA3K is involved in the renal oxidant response, HIF1α/VEGF pathway, and cell apoptosis.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , Mice , Acute Kidney Injury/metabolism , Apoptosis , Kidney/metabolism , Oxidative Stress , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/metabolism
4.
Rev. invest. clín ; 75(2): 53-62, Mar.-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1515308

ABSTRACT

Abstract Background: The state of Aguascalientes, Mexico, has been recognized as a chronic kidney disease hotspot. Screening studies have revealed a high prevalence of persistent albuminuria (pA), histologically characterized by glomerulomegaly, and incomplete podocyte fusion, probably associated with oligonephrony. To date, urinary biomarkers have not been explored in this population. Objective: The aim of the study was to identify the presence of potential biomarkers of early renal injury in patients with pA (pACR) and that correspond with the characteristic nephropathy profile that prevails in this entity. Methods: This is a cross-sectional, analytical, and comparative study. Four groups were recruited: adolescents aged 10-17 years with pACR, isolated albuminuria (iACR), no albuminuria (negative control), and adults with biopsy-confirmed glomerulopathy (positive control). Urinary excretion of SerpinA3, heat-shock protein-72 (HSP-72), podocalyxin (PCX), and nephrin was evaluated in urine samples. SerpinA3 and HSP-72 were analyzed by Western blot, and PCX and nephrin were quantified by enzyme-linked immunosorbent assay. Results: The mean GFR in the pACR group was 113.4 mL/min/1.73m2 and differed significantly only from that of the positive control group (65.1 mL/min/1.73m2). The mean albuminuria value in the pACR group was 48.9 mg/g. SerpinA3 concentration differed between groups (0.08 vs. 0.25 ng/mL, p < 0.001): it was significantly higher in the pACR group compared to the negative controls (p = 0.037). Conclusion: SerpinA3 was significantly associated with pA and could become a biomarker of early kidney injury. Further investigations are required to determine whether SerpinA3 precedes the development of albuminuria and its pathogenic role.

5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498913

ABSTRACT

Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-ß, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Animals , Heme Oxygenase-1 , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Renal Insufficiency, Chronic/metabolism , Kidney/metabolism , Ischemia/complications , Anti-Inflammatory Agents/pharmacology , Heme/pharmacology
6.
Am J Physiol Renal Physiol ; 323(4): F425-F434, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35834275

ABSTRACT

We have previously reported that urinary excretion of serpin-A3 (uSerpA3) is significantly elevated in patients with active lupus nephritis (LN). Here, we evaluated the course of uSerpA3 during the first year of treatment and its association with response to therapy in patients with proliferative LN. The observational longitudinal study included 60 Mexican adults with proliferative LN followed during the first year after LN flare. uSerpA3 was detected by Western blot analysis at flare and after 3, 6, and 12 mo. The response to therapy was determined 1 yr after the LN flare. We evaluated the correlation between uSerpA3 and histological parameters at LN flare. The temporal association between uSerpA3 and response to therapy was analyzed with linear mixed models. uSerpA3 prognostic performance for response was evaluated with receiver-operating characteristic curves. Among the 60 patients studied, 21 patients (35%) were class III and 39 patients (65%) were class IV. uSerpA3 was higher in class IV than in class III LN (6.98 vs. 2.89 dots per in./mg creatinine, P = 0.01). Furthermore, uSerpA3 correlated with the histological activity index (r = 0.29, P = 0.02). There was a significant association between the temporal course of uSerpA3 and response to therapy. Responders showed a significant drop in uSerpA3 at 6 mo compared with LN flare (P < 0.001), whereas nonresponders persisted with elevated uSerpA3. Moreover, uSerpA3 was significantly lower at flare in responders compared with nonresponders (2.69 vs. 6.98 dots per in./mg creatinine, P < 0.05). Furthermore, uSerpA3 was able to identify nonresponders since 3 mo after LN flare (area under the curve: 0.77). In conclusion, uSerpA3 is an early indicator of kidney inflammation and predictor of the clinical response to therapy in patients with proliferative LN.NEW & NOTEWORTHY LN requires aggressive immunosuppression to improve long-term outcomes. Current indicators of remission take several months to normalize, prolonging treatment regiments in some cases. Serpin-A3 is present in urine of patients with proliferative LN. We evaluated the excretion of serpin-A3 in serial samples of patients with proliferative LN during the first year after flare. We found that uSerpA3 correlates with kidney inflammation and its decline at early points predicts the response to therapy 1 yr after flare.


Subject(s)
Lupus Nephritis , Serpins , Adult , Biomarkers/urine , Creatinine/urine , Humans , Inflammation , Longitudinal Studies , Lupus Nephritis/diagnosis , Lupus Nephritis/drug therapy , Serpins/urine , alpha 1-Antichymotrypsin/therapeutic use
7.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269715

ABSTRACT

Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Sirtuins/metabolism , Acute Kidney Injury/metabolism , Albuminuria , Animals , Inflammation/metabolism , Kidney/metabolism , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Sirtuins/genetics
8.
FASEB J ; 36(3): e22190, 2022 03.
Article in English | MEDLINE | ID: mdl-35147994

ABSTRACT

We demonstrated that serpinA3c/k relocates from the cytoplasm to the apical tubular membrane (ATM) in chronic kidney disease (CKD), suggesting its secretion in luminal space in pathophysiological contexts. Here, we studied serpinA3c/k expression and secretion under different stressful conditions in vitro and in vivo. HEK-293 cells were transfected with a FLAG-tagged serpinA3c/k clone and exposed to H2 O2 or starvation. Both stressors induced serpinA3c/k secretion but with a higher molecular weight. Glycanase treatment established that serpinA3c/k is glycosylated. Site-directed mutagenesis for each of the four glycosylation sites was performed. During cellular stress, serpinA3c/k secretion increased with each mutant except in the quadruple mutant. In rats and patients suffering acute kidney injury (AKI), an atypical urinary serpinA3c/k excretion (uSerpinA3c/k) was observed. In rats with AKI, the greater the induced kidney damage, the greater the uSerpinA3 c/k, together with relocation toward ATM. Our findings show that: (1) serpinA3c/k is glycosylated and secreted, (2) serpinA3c/k secretion increases during cellular stress, (3) its appearance in urine reveals a pathophysiological state, and (4) urinary serpinA3 excretion could become a potential biomarker for AKI.


Subject(s)
Acute Kidney Injury/metabolism , Stress, Physiological , alpha 1-Antichymotrypsin/metabolism , Acute Kidney Injury/urine , Animals , Glycosylation , HEK293 Cells , Humans , Male , Mutation , Rats , alpha 1-Antichymotrypsin/genetics , alpha 1-Antichymotrypsin/urine
9.
Rev Invest Clin ; 74(2): 090-096, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35038259

ABSTRACT

BACKGROUND: Early post-liver transplant (LT) acute kidney injury (AKI) has been associated with worse short-term and long-term outcomes, but the incidence and risk factors in our population are unknown. METHODS: We designed a prospective, singlecenter, longitudinal cohort study to determine the incidence of AKI during the immediate postoperative period of LT, and to identify the risk factors associated with AKI after LT. Pre-operative and intraoperative variables were analyzed to determine if there was any correlation with the development of post-operative AKI. RESULTS: Eighty-six patients were included in the final analysis; from them, 45 (52%) developed AKI in the following 30 days after LT. The presence of hepatic encephalopathy prior to LT was the factor most strongly associated with the development of AKI (Relative Risk 3.67, 95% Confidence Interval 1.08-8.95). Other factors associated with AKI development were male gender and a higher serum lactate during surgery. CONCLUSION: AKI was a frequent complication that significantly worsened the prognosis of LT recipients and was associated with an increased 30-day mortality rate. The presence of hepatic encephalopathy strongly predicted the development of severe AKI.


Subject(s)
Acute Kidney Injury , Liver Transplantation , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Humans , Liver Transplantation/adverse effects , Longitudinal Studies , Male , Prospective Studies , Retrospective Studies , Risk Factors
10.
Rev Invest Clin ; 75(2): 53-62, 2022.
Article in English | MEDLINE | ID: mdl-37205833

ABSTRACT

Background: The state of Aguascalientes, Mexico, has been recognized as a chronic kidney disease hotspot. Screening studies have revealed a high prevalence of persistent albuminuria (pA), histologically characterized by glomerulomegaly, and incomplete podocyte fusion, probably associated with oligonephrony. To date, urinary biomarkers have not been explored in this population. Objective: The aim of the study was to identify the presence of potential biomarkers of early renal injury in patients with pA (pACR) and that correspond with the characteristic nephropathy profile that prevails in this entity. Methods: This is a cross-sectional, analytical, and comparative study. Four groups were recruited: adolescents aged 10-17 years with pACR, isolated albuminuria (iACR), no albuminuria (negative control), and adults with biopsy-confirmed glomerulopathy (positive control). Urinary excretion of SerpinA3, heat-shock protein-72 (HSP-72), podocalyxin (PCX), and nephrin was evaluated in urine samples. SerpinA3 and HSP-72 were analyzed by Western blot, and PCX and nephrin were quantified by enzyme-linked immunosorbent assay. Results: The mean GFR in the pACR group was 113.4 mL/min/1.73m2 and differed significantly only from that of the positive control group (65.1 mL/min/1.73m2). The mean albuminuria value in the pACR group was 48.9 mg/g. SerpinA3 concentration differed between groups (0.08 vs. 0.25 ng/mL, p < 0.001): it was significantly higher in the pACR group compared to the negative controls (p = 0.037). Conclusion: SerpinA3 was significantly associated with pA and could become a biomarker of early kidney injury. Further investigations are required to determine whether SerpinA3 precedes the development of albuminuria and its pathogenic role.


Subject(s)
Renal Insufficiency, Chronic , Serpins , Adult , Humans , Adolescent , alpha 1-Antichymotrypsin , Prevalence , Cross-Sectional Studies , Albuminuria/epidemiology , Albuminuria/etiology , Renal Insufficiency, Chronic/epidemiology , Biomarkers , Glomerular Filtration Rate
11.
Physiol Rep ; 9(14): e14937, 2021 07.
Article in English | MEDLINE | ID: mdl-34291592

ABSTRACT

Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.


Subject(s)
Diet, High-Fat/adverse effects , Kidney Diseases/etiology , Kidney Diseases/pathology , Oxidative Stress/physiology , Animals , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Obesity/pathology
12.
Sci Rep ; 11(1): 8769, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888767

ABSTRACT

Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.


Subject(s)
DNA Methylation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/blood supply , Promoter Regions, Genetic , Renal Insufficiency, Chronic/pathology , Vascular Endothelial Growth Factor A/genetics , Acute Kidney Injury/pathology , Animals , Disease Progression , Ischemia/pathology , Male , Oxidative Stress , Rats , Rats, Wistar , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
13.
Antibiotics (Basel) ; 9(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096599

ABSTRACT

Fosfomycin (Fos) has emerged as a potential treatment against multidrug-resistant organisms, however, there has been little work done on its influence on calcineurin inhibitor nephrotoxicity (CIN). This study was designed to evaluate the effect of Fos in combination with cyclosporine (CsA) on CIN. Two sets of experiments were undertaken. In the first, Wistar rats received different doses of Fos: 0, 62.5, 125, 250, and 500 mg/kg. In the second, rats were divided into four groups: control, CsA 15 mg/kg s.c., CsA + fosfomycin 62.5 mg/kg (CsA + LF), and CsA + Fos 500 mg/kg (CsA + HF). CsA was administrated daily for 14 days, whereas Fos administration started on the ninth day followed by two more doses, delivered 48 h apart. The administration of different Fos doses did not alter renal function. In contrast, CsA induced arteriolopathy, hypoperfusion, a reduction in the glomerular filtration rate, and downregulation of eNOS, angiotensinogen, and AT1R mRNA levels. Lower doses of Fos did not modify CIN. Instead, the CsA + HF group exhibited greater hypoperfusion, arteriolopathy, and oxidative stress, and increased mRNA levels of pro-inflammatory cytokines. This study shows that Fos administered by itself at different doses did not cause renal injury, but when it was given repeatedly at high dosages (500 mg/kg) in combination with CsA, it increased CIN through the promotion of greater oxidative stress and renal inflammation.

14.
Am J Physiol Renal Physiol ; 317(6): F1637-F1648, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31608674

ABSTRACT

Protein restriction (PR) during pregnancy induces morphofunctional alterations related to deficient nephrogenesis. We studied the renal functional and morphological significance of PR during pregnancy and/or lactation in adult male rat offspring and the repercussions on acute kidney injury (AKI) severity. Female rats were randomly assigned to the following groups: control diet during pregnancy and lactation (CC), control diet during pregnancy and PR diet during lactation (CR), PR during pregnancy and control diet during lactation (RC), and PR during pregnancy and lactation (RR). Three months after birth, at least 12 male offspring of each group randomly underwent either bilateral renal ischemia for 45 min [ischemia-reperfusion (IR)] or sham surgery. Thus, eight groups were studied 24 h after reperfusion: CC, CC + IR, CR, CR + IR, RC, RC + IR, RR, and RR + IR. Under basal conditions, the CR, RC, and RR groups exhibited a significant reduction in nephron number that was associated with a reduction in renal blood flow. Glomerular hyperfiltration was present as a compensatory mechanism to maintain normal renal function. mRNA levels of several vasoactive, antioxidant, and anti-inflammatory molecules were decreased. After IR, renal function was similarly reduced in all of the studied groups. Although all of the offspring from maternal PR exhibited renal injury, the magnitude was lower in the RC and RR groups, which were associated with faster renal blood flow recovery, differential vasoactive factors, and hypoxia-inducible factor-1α signaling. Our results show that the offspring from maternal PR are resilient to AKI induced by IR that was associated with reduced tubular injury and a differential hemodynamic response.


Subject(s)
Acute Kidney Injury/prevention & control , Diet, Protein-Restricted , Acute Kidney Injury/pathology , Animals , Animals, Newborn , Antioxidants/metabolism , Cytokines/metabolism , Diet , Female , Glomerular Filtration Rate , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Function Tests , Kidney Tubules/pathology , Lactation , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar , Renal Circulation , Reperfusion Injury/prevention & control
15.
Sci Rep ; 9(1): 10350, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316093

ABSTRACT

Recognizing patients at early phases of chronic kidney disease (CKD) is difficult, and it is even more challenging to predict acute kidney injury (AKI) and its transition to CKD. The gold standard to timely identify renal fibrosis is the kidney biopsy, an invasive procedure not usually performed for this purpose in clinical practice. SerpinA3 was identified by high-resolution-mass-spectrometry in urines from animals with CKD. An early and progressive elevation of urinary SerpinA3 (uSerpinA3) was observed during the AKI to CKD transition together with SerpinA3 relocation from the cytoplasm to the apical tubular membrane in the rat kidney. uSerpinA3/alpha-1-antichymotrypsin was significantly increased in patients with CKD secondary to focal and segmental glomerulosclerosis (FSGS), ANCA associated vasculitis (AAV) and proliferative class III and IV lupus nephritis (LN). uSerpinA3 levels were independently and positively associated with renal fibrosis. In patients with class V LN, uSerpinA3 levels were not different from healthy volunteers. uSerpinA3 was not found in patients with systemic inflammatory diseases without renal dysfunction. Our observations suggest that uSerpinA3 can detect renal fibrosis and inflammation, with a particular potential for the early detection of AKI to CKD transition and for the differentiation among lupus nephritis classes III/IV and V.


Subject(s)
Acute Kidney Injury/urine , Renal Insufficiency, Chronic/urine , Serpins/urine , alpha 1-Antichymotrypsin/urine , Adult , Amino Acid Sequence , Animals , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/urine , Biomarkers/urine , Disease Progression , Early Diagnosis , Female , Glomerulosclerosis, Focal Segmental/urine , Humans , Inflammation/urine , Ischemia/urine , Kidney/blood supply , Lupus Nephritis/classification , Lupus Nephritis/urine , Male , Mass Spectrometry , Middle Aged , Pancreatitis/urine , Protein Transport , Random Allocation , Rats , Rats, Wistar , Renal Insufficiency, Chronic/diagnosis , Young Adult , alpha 1-Antitrypsin/urine
16.
Am J Physiol Renal Physiol ; 317(3): F519-F528, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31241992

ABSTRACT

Mineralocorticoid receptor antagonism prevents acute kidney injury induced by ischemia-reperfusion in rodent and pig preclinical models. In a pilot study, we showed that spironolactone (25 mg) reduced oxidative stress after 5 days of kidney transplant (KT). In the present study, we investigated the effects of higher doses (50 and 100 mg) of spironolactone on kidney function, tubular injury markers, and oxidative stress in living donor KT recipients. We included KT recipients aged 18 yr or older who received immunosuppression therapy with IL-2 receptor antagonist, mycophenolate mofetil, corticosteroids, and tacrolimus with negative cross-match, and compatible blood group. Patients were randomized to receive placebo (n = 27), spironolactone (50 mg, n = 25), or spironolactone (100 mg, n = 25). Treatment was given from 3 days before and up to 5 days after KT. Serum creatinine, K+, urine neutrophil gelatinase-associated lipocalin-2, heat shock protein 72, and 8-hydroxy-2-deoxyguanosine levels were assessed. As expected, kidney function was improved after KT. Serum K+ remained in the normal range along the study. There was no significant effect of spironolactone on urinary neutrophil gelatinase-associated lipocalin-2 levels, whereas the increase in urinary heat shock protein 72 levels tended to be less intense in the 100 mg spironolactone-treated group (P = 0.054). In the placebo-treated group, urinary 8-hydroxylated-guanosine levels increased on days 3 and 5 after transplantation. This effect was prevented in patients that received spironolactone. In conclusion, spironolactone reduces the acute increase in urinary oxidative stress in living donor KT recipients.


Subject(s)
Antioxidants/therapeutic use , Kidney Transplantation/methods , Kidney/drug effects , Kidney/surgery , Living Donors , Mineralocorticoid Receptor Antagonists/therapeutic use , Oxidative Stress/drug effects , Spironolactone/therapeutic use , 8-Hydroxy-2'-Deoxyguanosine/urine , Adult , Antioxidants/adverse effects , Biomarkers/blood , Biomarkers/urine , Double-Blind Method , Female , HSP72 Heat-Shock Proteins/urine , Humans , Immunosuppressive Agents/therapeutic use , Kidney/metabolism , Kidney/physiopathology , Kidney Transplantation/adverse effects , Lipocalin-2/urine , Male , Mexico , Mineralocorticoid Receptor Antagonists/adverse effects , Pilot Projects , Spironolactone/adverse effects , Time Factors , Treatment Outcome , Young Adult
17.
Am J Physiol Renal Physiol ; 317(2): F275-F285, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31116605

ABSTRACT

Major cardiovascular events are a common complication in patients with chronic kidney disease (CKD). Endothelial dysfunction can contribute to the cardiovascular injury observed in CKD. Here, we used a rat model of acute kidney injury to CKD transition to investigate heart alterations in the pathway activating endothelial nitric oxide synthase (eNOS) and its impact on the cardiac injury observed during CKD progression. Fifty male Wistar rats were subjected to sham surgery (n = 25) or bilateral renal ischemia-reperfusion (IR-CKD) for 45 min (n = 25). Rats were studied on a monthly basis up to 5 mo (n = 5). In another set of sham and IR-CKD rats, l-arginine was administered starting on the third month after renal ischemia. CKD development and cardiac alterations were monitored in all groups. CKD was characterized by a progressive increase in proteinuria and renal dysfunction that was evident after the fifth month of followup. Heart hypertrophy was observed starting on the fourth month after ischemia-reperfusion. There was a significant increase in brain natriuretic peptide levels. In the heart, IR-CKD rats had increased eNOS phosphorylation at threonine 495 and reduced eNOS-heat shock protein-90α interactions. l-Arginine administration prevented the heart alterations observed during CKD and increased eNOS coupling/dimerization and activation. In summary, CKD progression is accompanied by cardiac hypertrophy, fibrosis, oxidative stress, and increased brain natriuretic peptide levels. These alterations were associated with limited eNOS activation in the heart, which may result in reduced nitric oxide bioavailability and contribute to cardiac injury during CKD.


Subject(s)
Acute Kidney Injury/complications , Cardiomegaly/etiology , Myocardium/enzymology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Renal Insufficiency, Chronic/etiology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/enzymology , Animals , Arginine/pharmacology , Cardiomegaly/enzymology , Cardiomegaly/prevention & control , Disease Models, Animal , Disease Progression , Down-Regulation , Enzyme Activation , Fibrosis , HSP90 Heat-Shock Proteins/metabolism , Male , Natriuretic Peptide, Brain/metabolism , Oxidative Stress , Phosphorylation , Rats, Wistar , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/prevention & control , Threonine , Time Factors
18.
BMC Nephrol ; 20(1): 158, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068174

ABSTRACT

BACKGROUND: Pirfenidone is an orally active drug used for the treatment of idiopathic pulmonary fibrosis to slow loss of lung function; it acts mainly through an antifibrotic effect but also possesses antioxidant and anti-inflammatory properties. We assessed the effect of prophylactic administration of pirfenidone on acute kidney injury due to bilateral renal ischemia. METHODS: Eighteen rats were included and divided in: 1) sham-operated rats (S), 2) rats underwent bilateral renal ischemia for 20 min (I/R), and 3) rats treated with pirfenidone 700 mg/kg/day 24 h before surgery and subjected to bilateral renal ischemia for 20 min (I/R + PFN). All the rats were euthanized and studied 24 h after renal reperfusion. RESULTS: As was expected, the I/R group exhibited a significant reduction in creatinine clearance, urinary output and renal blood flow, as well as extensive tubular injury. These alterations were associated with a significant decrease in urinary excretion of nitrites and nitrates (UNO2/NO3V). In the I/R + PFN group, recovery of renal function and UNO2/NO3V was observed, together with lesser histological signs of tubular injury compared to the I/R group. CONCLUSIONS: This study shows that prophylactic administration of pirfenidone prevented acute kidney injury due to bilateral ischemia in the rat. Recovery of NO production appears to be one of the mechanism of pirfenidone renoprotective effect. Our findings suggest that pirfenidone is a promising drug to reduce renal injury induced by I/R.


Subject(s)
Acute Kidney Injury/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/therapeutic use , Ischemia/complications , Kidney/blood supply , Pyridones/therapeutic use , Acute Kidney Injury/etiology , Animals , Kidney/pathology , Male , Nitric Oxide/biosynthesis , Nitric Oxide/urine , Rats , Rats, Wistar , Reperfusion Injury/complications
19.
Nephrol Dial Transplant ; 34(5): 794-801, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30107561

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is not as harmless as previously thought since it may lead to chronic kidney disease (CKD). Because most of the time ischemic AKI occurs unexpectedly, it is difficult to prevent its occurrence and there are no specific therapeutic approaches to prevent the AKI to CKD transition. We aimed to determine whether mineralocorticoid receptor blockade (MRB) in the first days after ischemia/reperfusion (IR) can prevent progression to CKD. METHODS: Four groups of male Wistar rats were included: sham and three groups of bilateral renal ischemia for 45 min, one without treatment and the other two receiving spironolactone for 5 or 10 days, starting 24 h after IR. The rats were studied at 10 days or 5 months after ischemia induction. RESULTS: After 5 months of follow-up, the untreated group exhibited clear evidence of AKI to CKD progression, such as proteinuria, reduced renal blood flow, tubulointerstitial fibrosis, glomerulosclerosis and glomerular hypertrophy. All these alterations were prevented by both spironolactone treatments initiated 24 h after IR, the 10-day treatment being more effective. Within the early mechanisms of the MRB protective effect are the reduction of inflammation and increased endothelin-B-receptor expression and endothelial nitric oxide synthase activation in the first 10 days after IR. CONCLUSIONS: We propose that MRB, administered 24 h after the ischemic injury that leads to AKI, reduces inflammation and promotes efficient tissue repair that avoids the AKI to CKD transition. These data highlight a therapeutic window to preclude CKD development after AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Inflammation/metabolism , Kidney/pathology , Receptor, Endothelin B/metabolism , Renal Insufficiency, Chronic/prevention & control , Spironolactone/administration & dosage , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Delayed-Action Preparations , Disease Models, Animal , Disease Progression , Inflammation/pathology , Kidney/metabolism , Male , Mineralocorticoid Receptor Antagonists/administration & dosage , Rats , Rats, Wistar , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
20.
Sci Rep ; 7(1): 12270, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947737

ABSTRACT

This study evaluated if there is a sexual dimorphism in the acute kidney injury (AKI) to chronic kidney disease (CKD) transition and the time-course of the potential mechanisms involved in the dimorphic response. Female and male rats were divided into sham-operated or underwent 45-min renal ischemia (F + IR, and M + IR). All groups were studied at 24-h and 1, 2, 3, or 4-months post-ischemia. Additionally, oophorectomized rats were divided into sham or IR groups. After 24-h, AKI extent was simllar in females and males, but female rats exhibited less oxidative stress and increased renal GSH content. After 4-months and despite similar AKI, the M + IR group developed CKD characterized by proteinuria, tubulointerstitial fibrosis, glomerular hypertrophy, increased oxidative stress and a reduction in HIF1α and VEGF from the 1st-month and persisting throughout the time-course studied. Interestingly, the F + IR group did not develop CKD due to lesser oxidative stress and increased eNOS, TGFß and HIF1α mRNA levels from the 1st-month after IR. Whereas, oophorectomized rats did develop CKD. We found a sexual dimorphic response in the AKI to CKD transition. Early antioxidant defense and higher TGFß, HIF1α and eNOS were among the renoprotective mechanisms that the F + IR group demonstrated.


Subject(s)
Acute Kidney Injury/parasitology , Renal Insufficiency, Chronic/pathology , Sex Factors , Animals , Glutathione/analysis , Oxidative Stress , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...